A new approach to the detection of lesions in mammography using fuzzy clustering.

نویسندگان

  • Y Wang
  • H Shi
  • S Ma
چکیده

Breast cancer is a leading cause of female mortality and its early detection is an important means of reducing this. The present study investigated an approach, based on fuzzy clustering, to detect small lesions, such as microcalcifications and other masses, that are hard to recognize in breast cancer screening. A total of 180 mammograms were analysed and classified by radiologists into three groups (n = 60 per group): those with microcalcifications; those with tumours; and those with no lesions. Twenty mammograms were taken as training data sets from each of the groups. The algorithm was then applied to the data not taken for training. Analysis by fuzzy clustering achieved a mean accuracy of 99.7% compared with the radiologists' findings. It was concluded that the fuzzy clustering algorithm allowed for more efficient and accurate detection of breast lesions and may improve the early detection of breast tumours.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

A New Method of Earlier Kick Assessment Using ANFIS

The late detection of the kick (the entrance of underground fluids into oil wells) leads to oil well blowouts. It causes human life loss and imposes a great deal of expenses on the petroleum industry. This paper presents the application of adaptive neuro-fuzzy inference system designed for an earlier kick detection using measurable drilling parameters. In order to generate the initial fuzzy inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of international medical research

دوره 39 6  شماره 

صفحات  -

تاریخ انتشار 2011